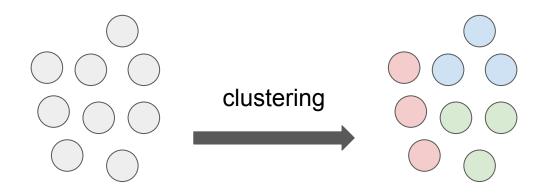
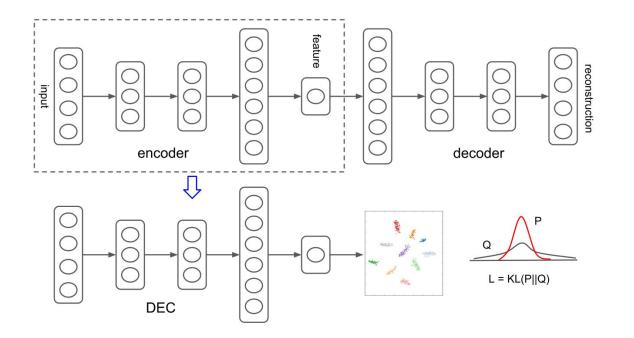
Unsupervised Deep Embedding for Clustering Analysis

Advisor: Jia-Ling, Koh Speaker: Zi-Xin Chen Source: ICML'16 Date: 2022/10/11


Outline

- Introduction
- Method
- Experiment
- Conclusion

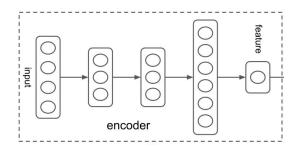
Introduction


Clustering

• During clustering process, similar items are grouped together and distinct samples are separated

Deep Clustering - DEC

• Unsupervised learning of the **feature space** where to perform clustering

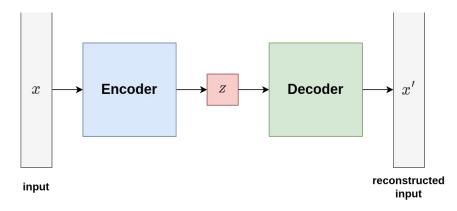

Method

Problem Formulation

X : data space $n \text{ points} : \{x_i \in X\}_{i=1}^n$

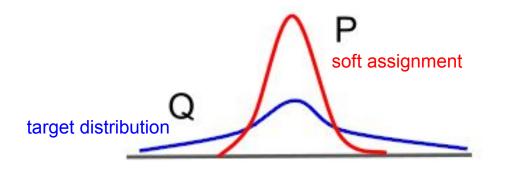
Z : feature space n points : $\{z_i \in Z\}_{i=1}^n$ k centroids : $\{\mu_j \in Z\}_{j=1}^k$

 $f_{\theta}: X \to Z$

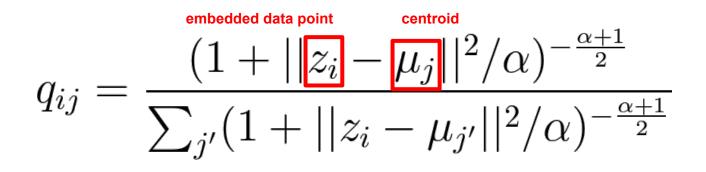


Initialization

1. Train an autoencoder


*training data: 100000 unlabeled images from STL-10

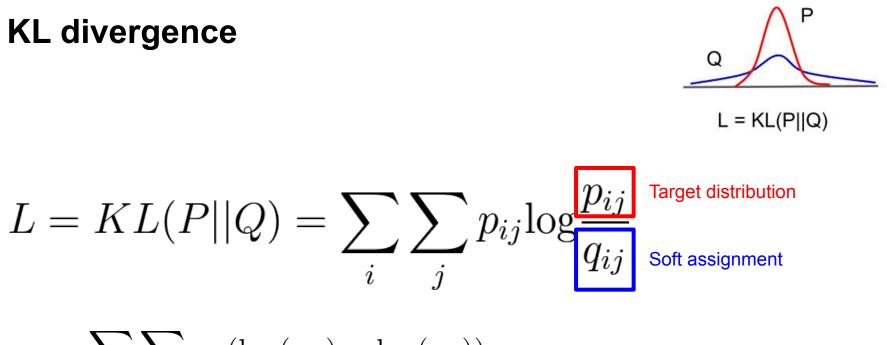
- 2. Discard the decoder
- 3. Get embedded data
- 4. Perform k-means to get initial centroids $\{\mu_j \in Z\}_{j=1}^k$


Objective function

• Model is trained by matching the **soft assignment** to the **target distribution**

Soft assignment

• The probability of assigning sample *i* to cluster *j*



Auxiliary target distribution

 $p_{ij} = \frac{q_{ij}^2 / f_j}{\sum_{j'} q_{ij'}^2 / f_{j'}}$

$$f_j = \sum_i q_{ij}$$

Soft cluster frequencies

$$=\sum_{i}\sum_{j}p_{ij}(\log(p_{ij})-\log(q_{ij}))$$

Experiment

Dataset

dataset	size	classes	type
MNIST	70000	10	image
STL-10	1300	10	image
REUTERS	685071	4	text
REUTERS-10K	10000	4	text

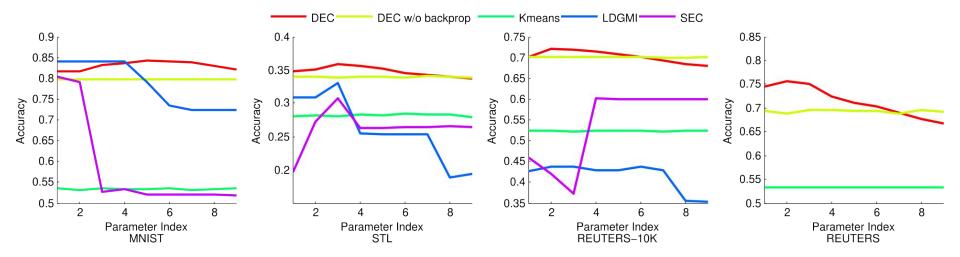
Evaluation Metric

• Accuracy for classification

$$ACC = \frac{\sum_{i=1}^{n} \mathbf{1}\{l_i = c_i\}}{n}$$

• Accuracy for clustering

Permutes clustering labels to match the ground truth labels

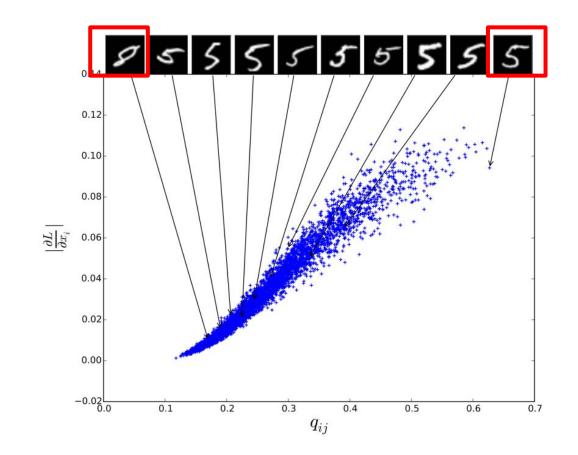

$$ACC = \max_{m} \frac{\sum_{i=1}^{n} \mathbf{1}\{l_i = m(c_i)\}}{n}$$

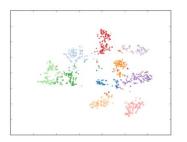
Method	MNIST	STL-HOG	REUTERS-10k	REUTERS
k-means	53.49%	28.39%	52.42%	53.29%
LDMGI	84.09%	33.08%	43.84%	N/A
SEC	80.37%	30.75%	60.08%	N/A
DEC w/o backprop	79.82%	34.06%	70.05%	69.62%
DEC (ours)	84.30%	35.90%	72.17%	75.63%

Table 2. Comparison of clustering accuracy (Eq. 10) on four datasets.

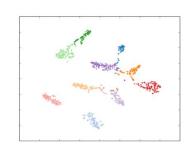
*LDMGI, SEC : spectral clustering based

*DEC w/o backprop : freeze the non-linear mapping f_θ

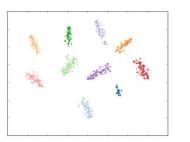


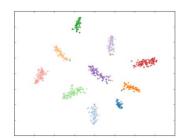


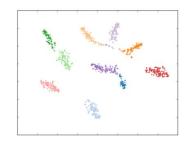
(a) MNIST

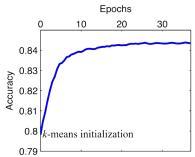


(b) STL-10

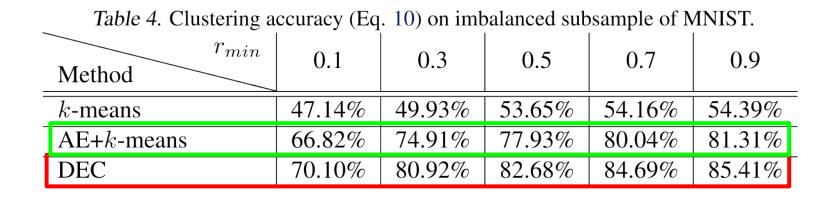



(a) Epoch 0




(d) Epoch 9

(e) Epoch 12



(f) Accuracy vs. epochs

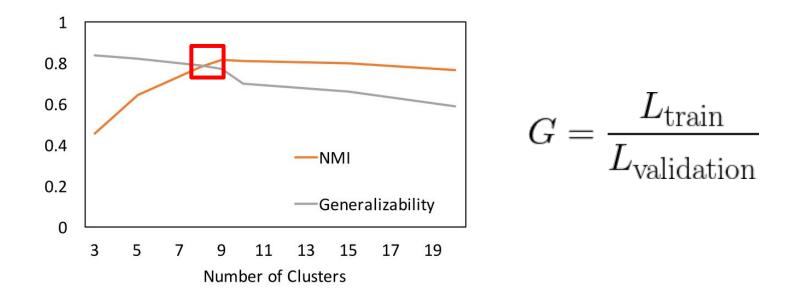

Contribution of Autoencoder Initialization

Table 3. Comparison of clustering accuracy (Eq. 10) on autoencoder (AE) feature.						
Method	1	MNIST	STL-HOG	REUTERS-10k	REUTERS	
AE+k-	means	81.84%	33.92%	66.59%	71.97%	
AE+LI	DMGI	83.98%	32.04%	42.92%	N/A	
AE+SE	EC	81.56%	32.29%	61.86%	N/A	
DEC (o	ours)	84.30%	35.90%	72.17%	75.63%	

Performance on Imbalanced Data

Number of clusters

Conclusion

Conclusion

- Present an algorithm that clusters a set of data points in a jointly optimized feature space
- A way to learn a representation specialized for clustering without ground truth cluster membership labels